06 9 v 1 2 3 D ec 1 99 1 PUPT - 1282 December 4 , 1991 Unitary And Hermitian Matrices In An External Field II

نویسندگان

  • David J. Gross
  • Michael J. Newman
  • Joseph Henry
چکیده

We give a simple derivation of the Virasoro constraints in the Kontsevich model, first derived by Witten. We generalize the method to a model of unitary matrices, for which we find a new set of Virasoro constraints. Finally we discuss the solution for symmetric matrices in an external field. ⋆ Research supported in part by NSF grant PHY90-21984 † E-mail: [email protected]; [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 1 71 2 . 06 96 9 v 1 [ m at h . N T ] 1 9 D ec 2 01 7 THETA OPERATORS ON UNITARY SHIMURA VARIETIES

We define a theta operator on p-adic vector-valued modular forms on unitary groups of arbitrary signature, over a quadratic imaginary field in which p is inert. We study its effect on Fourier-Jacobi expansions and prove that it extends holomorphically beyond the μ-ordinary locus, when applied to scalar-valued forms.

متن کامل

ar X iv : m at h - ph / 0 41 20 17 v 1 7 D ec 2 00 4 Introduction to the Random Matrix Theory : Gaussian Unitary Ensemble and Beyond

These lectures provide an informal introduction into the notions and tools used to analyze statistical properties of eigenvalues of large random Hermitian matrices. After developing the general machinery of orthogonal polynomial method, we study in most detail Gaussian Unitary Ensemble (GUE) as a paradigmatic example. In particular, we discuss Plancherel-Rotach asymptotics of Hermite polynomial...

متن کامل

/ 91 08 01 9 v 1 2 6 A ug 1 99 1 PUPT - 1271 July 1991 STRING THEORY IN TWO DIMENSIONS ⋆

I review some of the recent progress in two-dimensional string theory, which is formulated as a sum over surfaces embedded in one dimension.

متن کامل

ar X iv : h ep - t h / 94 12 18 2 v 1 2 0 D ec 1 99 4 BROWN - HET - 974 IFUP - TH 75 / 94 December 1994 SIMPLICIAL CHIRAL MODELS

Principal chiral models on a d-1 dimensional simplex are introduced and studied analytically in the large N limit. The d = 0, 2, 4 and ∞ models are explicitly solved. Relationship with standard lattice models and with few-matrix systems in the double scaling limit are discussed. ⋆ Work supported in part by the Department of Energy under contract DE-FG02-91ER40688Task A The importance of underst...

متن کامل

An FPT algorithm with a modularized structure for computing two-dimensional discrete Fourier transforms

With the change of variables U = U*q, substitution into (21) results in UCU*q = Ud. Consequently, the solution vector U of (20) can be obtained from the solution vector q of (22) or q can be obtained from U. Note that if a system of real equations is Toeplitz-plus-Hankel (T + H) , where T i s symmetric Toeplitz and H i s skew-centrosym-metric Hankel, then the equations may be transformed into H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991